$$K_L \to \pi^0 \mu e$$
 Status

MDC, KTeV meeting, Sept 10, 2005

I have redefined the signal region by defining a likelihood variable which is the product of PDFs for the Kaon mass and p_t^2 distributions. Here is an example fit to the p_t^2 distribution for signal MC.

Fit to p_t^2 distribution for $K_L \to \pi^0 \mu e$ signal MC

$K_L \to \pi^0 \mu e$ Status

To be sure p_t^2 and K-mass are uncorrelated, look at the covariance:

$$< p_t^2 - < p_t^2 >> * < Kmass - < Kmass >>$$

Distribution of $(p_t^2 - \langle p_t^2 \rangle) * (Kmass - \langle Kmass \rangle)$ for signal Monte Carlo. The mean of this distribution is the covariance of these two variables, consistent with zero.

$$K_L \to \pi^0 \mu e$$
 Status

The likelihood variable is the product of the PDFs, and is shown below for signal MC. The signal region is defined as pdf > 10, and a blind region is defined as pdf > 5. The lower plot compares the new signal region with the old signal box.

Top: Likelihood variable for signal Monte Carlo. Bottom: Comparison of the old signal box with the new signal region and blind region.

$$K_L o \pi^0 \mu e$$

Background Estimate- K_{e4} decays

With the improved/corrected Monte Carlo and NA48 form factors, the expected K_{e4} background has increased a factor of 5. I have used NA48 form factors (very similar to Edivaldo's new KTeV FFs). The plot below shows the 40x flux K_{e4} Monte Carlo in the p_t^2 vs. Kmass plane.

For 99 data: K_{e4} background estimate in new signal region: 0.05 ± 0.035 K_{e4} background estimate in old signal region: 0.25 ± 0.08 For comparison the old estimate of K_{e4} in old signal region was 0.05 ± 0.05 .

$$K_L o \pi^0 \mu e$$

Non- K_{e4} background estimate from the data

I have tried several things but have the most confidence in the $M_{\gamma\gamma}$ sideband estimate. With all other cuts in place, the $M_{\gamma\gamma}$ distribution for the 99 data is shown below.

I exclude the M_{π^0} signal region and see what is in the pdf signal region, correcting by the ratio of the sideband area/signal area.

 $M_{\gamma\gamma}$ distribution for 99 data, with all cuts except the M_{π^0} mass cut

These estimates exclude K_{e4} background. Expected background in signal region $(pdf > 10):0.31 \pm 0.16$ Expected background in blind region $(pdf > 5): 1.33 \pm 0.32$

$K_L \to \pi^0 \mu e \text{ summary}$

For 99 data:

- Expected background in the signal region is 0.36 ± 0.16
- Expected background in the blind region is 2.1 ± 0.35
- Signal accepance is 0.036
- Apparent flux is $3.37 \times 10^{11} K_L$ decays.
- If there are no events in the signal region, the 90%CL BR limit will be 1.7 × 10⁻¹⁰.

For 97 data:

- Expected background in the signal region is 0.25 ±0.14 events
- Expected background in the blind region is 1.03 ± 0.25 .
- Signal accepance is 0.036
- Apparent flux is 2.82 ×10¹¹ K_L decays.
- If there are no events in the signal region, the 90%CL BR limit will be 2.2×10^{-10} .

Combined 90% CL BR limit: 8.5×10^{-11}

See the long writeup /cdserv/taku/private/ktevdoc/e799/kpi0mue/ktopi0mue.ps

$$K_L o \pi^0 \pi^0 \mu e$$

(no change from last time)

For 99 data:

- Estimated background in the signal region is 0.5 ±0.14 events
- Signal accepance is 2.02%
- Flux is 3.76 ×10¹¹ K_L decays.
- If there are no events in the signal region, the 90%CL BR limit is 2.7×10^{-10} .

For 97 data:

- Estimated background in the signal region is 0.1 ±0.05 events
- Signal accepance is 1.80%
- Flux is $2.64 \times 10^{11} K_L$ decays.
- If there are no events in the signal region, the BR limit will be 4.9×10^{-10} .

Combined 90% CL limit from both 97 and 99 data would be (assuming no events are observed in the signal region) $BR(K_L \to \pi^0 \pi^0 \mu e) < 1.5 \times 10^{-10}$

Please see the long writeup:

/cdserv/taku/private/ktevdoc/e799/kpi0mue/pi0mue.ps